首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7987篇
  免费   578篇
  国内免费   1篇
  2023年   36篇
  2022年   30篇
  2021年   124篇
  2020年   80篇
  2019年   118篇
  2018年   141篇
  2017年   137篇
  2016年   239篇
  2015年   392篇
  2014年   450篇
  2013年   497篇
  2012年   740篇
  2011年   707篇
  2010年   461篇
  2009年   409篇
  2008年   583篇
  2007年   493篇
  2006年   471篇
  2005年   382篇
  2004年   407篇
  2003年   389篇
  2002年   358篇
  2001年   67篇
  2000年   56篇
  1999年   66篇
  1998年   74篇
  1997年   56篇
  1996年   53篇
  1995年   42篇
  1994年   37篇
  1993年   52篇
  1992年   35篇
  1991年   26篇
  1990年   17篇
  1989年   30篇
  1988年   20篇
  1987年   26篇
  1986年   19篇
  1985年   20篇
  1984年   22篇
  1983年   32篇
  1982年   21篇
  1981年   20篇
  1980年   12篇
  1978年   8篇
  1977年   18篇
  1976年   13篇
  1975年   8篇
  1974年   9篇
  1973年   8篇
排序方式: 共有8566条查询结果,搜索用时 15 毫秒
101.
102.
Monitoring the complex transmission dynamics of a bacterial virus (temperate phage P22) throughout a population of its host (Salmonella Typhimurium) at single cell resolution revealed the unexpected existence of a transiently immune subpopulation of host cells that emerged from peculiarities preceding the process of lysogenization. More specifically, an infection event ultimately leading to a lysogen first yielded a phage carrier cell harboring a polarly tethered P22 episome. Upon subsequent division, the daughter cell inheriting this episome became lysogenized by an integration event yielding a prophage, while the other daughter cell became P22-free. However, since the phage carrier cell was shown to overproduce immunity factors that are cytoplasmically inherited by the P22-free daughter cell and further passed down to its siblings, a transiently resistant subpopulation was generated that upon dilution of these immunity factors again became susceptible to P22 infection. The iterative emergence and infection of transiently resistant subpopulations suggests a new bet-hedging strategy by which viruses could manage to sustain both vertical and horizontal transmission routes throughout an infected population without compromising a stable co-existence with their host.  相似文献   
103.
104.
Epidemics and pandemics of cholera, a severe diarrheal disease, have occurred since the early 19th century and waves of epidemic disease continue today. Cholera epidemics are caused by individual, genetically monomorphic lineages of Vibrio cholerae: the ongoing seventh pandemic, which has spread globally since 1961, is associated with lineage L2 of biotype El Tor. Previous genomic studies of the epidemiology of the seventh pandemic identified three successive sub-lineages within L2, designated waves 1 to 3, which spread globally from the Bay of Bengal on multiple occasions. However, these studies did not include samples from China, which also experienced multiple epidemics of cholera in recent decades. We sequenced the genomes of 71 strains isolated in China between 1961 and 2010, as well as eight from other sources, and compared them with 181 published genomes. The results indicated that outbreaks in China between 1960 and 1990 were associated with wave 1 whereas later outbreaks were associated with wave 2. However, the previously defined waves overlapped temporally, and are an inadequate representation of the shape of the global genealogy. We therefore suggest replacing them by a series of tightly delineated clades. Between 1960 and 1990 multiple such clades were imported into China, underwent further microevolution there and then spread to other countries. China was thus both a sink and source during the pandemic spread of V. cholerae, and needs to be included in reconstructions of the global patterns of spread of cholera.  相似文献   
105.
Telomerase, the enzyme that maintains telomeres, preferentially lengthens short telomeres. The S. cerevisiae Pif1 DNA helicase inhibits both telomerase-mediated telomere lengthening and de novo telomere addition at double strand breaks (DSB). Here, we report that the association of the telomerase subunits Est2 and Est1 at a DSB was increased in the absence of Pif1, as it is at telomeres, suggesting that Pif1 suppresses de novo telomere addition by removing telomerase from the break. To determine how the absence of Pif1 results in telomere lengthening, we used the single telomere extension assay (STEX), which monitors lengthening of individual telomeres in a single cell cycle. In the absence of Pif1, telomerase added significantly more telomeric DNA, an average of 72 nucleotides per telomere compared to the 45 nucleotides in wild type cells, and the fraction of telomeres lengthened increased almost four-fold. Using an inducible short telomere assay, Est2 and Est1 no longer bound preferentially to a short telomere in pif1 mutant cells while binding of Yku80, a telomere structural protein, was unaffected by the status of the PIF1 locus. Two experiments demonstrate that Pif1 binding is affected by telomere length: Pif1 (but not Yku80) -associated telomeres were 70 bps longer than bulk telomeres, and in the inducible short telomere assay, Pif1 bound better to wild type length telomeres than to short telomeres. Thus, preferential lengthening of short yeast telomeres is achieved in part by targeting the negative regulator Pif1 to long telomeres.  相似文献   
106.
DNA polymerase V (pol V) of Escherichia coli is a translesion DNA polymerase responsible for most of the mutagenesis observed during the SOS response. Pol V is activated by transfer of a RecA subunit from the 3''-proximal end of a RecA nucleoprotein filament to form a functional complex called DNA polymerase V Mutasome (pol V Mut). We identify a RecA surface, defined by residues 112-117, that either directly interacts with or is in very close proximity to amino acid residues on two distinct surfaces of the UmuC subunit of pol V. One of these surfaces is uniquely prominent in the active pol V Mut. Several conformational states are populated in the inactive and active complexes of RecA with pol V. The RecA D112R and RecA D112R N113R double mutant proteins exhibit successively reduced capacity for pol V activation. The double mutant RecA is specifically defective in the ATP binding step of the activation pathway. Unlike the classic non-mutable RecA S117F (recA1730), the RecA D112R N113R variant exhibits no defect in filament formation on DNA and promotes all other RecA activities efficiently. An important pol V activation surface of RecA protein is thus centered in a region encompassing amino acid residues 112, 113, and 117, a surface exposed at the 3''-proximal end of a RecA filament. The same RecA surface is not utilized in the RecA activation of the homologous and highly mutagenic RumA''2B polymerase encoded by the integrating-conjugative element (ICE) R391, indicating a lack of structural conservation between the two systems. The RecA D112R N113R protein represents a new separation of function mutant, proficient in all RecA functions except SOS mutagenesis.  相似文献   
107.
108.

Objective

To evaluate the cost-effectiveness of introducing universal vaccination of adults aged 60 years with the 23-valent pneumococcal polysaccharide vaccine (PPV23) into the National Immunization Program (NIP) in Brazil.

Methods

Economic evaluation using a Markov model to compare two strategies: (1) universal vaccination of adults aged 60 years with one dose of PPV23 and 2) current practice (vaccination of institutionalized elderly and elderly with underlying diseases). The perspective was from the health system and society. Temporal horizon was 10 years. Discount rate of 5% was applied to costs and benefits. Clinical syndromes of interest were invasive pneumococcal disease (IPD) including meningitis, sepsis and others and pneumonia. Vaccine efficacy against IPD was obtained from a meta-analysis of randomized control trials and randomized studies, whereas vaccine effectiveness against pneumonia was obtained from cohort studies. Resource utilization and costs were obtained from the Brazilian Health Information Systems. The primary outcome was cost per life year saved (LYS). Univariate and multivariate sensitivity analysis were performed.

Results

The universal vaccination strategy avoided 7,810 hospitalizations and 514 deaths, saving 3,787 years of life and costing a total of USD$31,507,012 and USD$44,548,180, respectively, from the health system and societal perspective. The universal immunization would result in ICERs of USD$1,297 per LYS, from the perspective of the health system, and USD$904 per LYS, from the societal perspective.

Conclusion

The results suggest that universal vaccination of adults aged 60 years with the 23-valent pneumococcal polysaccharide vaccine (PPV23) is a very cost-effective intervention for preventing hospitalization and deaths for IPD and pneumonia is this age group in Brazil.  相似文献   
109.
110.
While most patients affected by the influenza A(H1N1) pandemic experienced mild symptoms, a small fraction required hospitalization, often without concomitant factors that could explain such a severe course. We hypothesize that host genetic factors could contribute to aggravate the disease. To test this hypothesis, we compared the allele frequencies of 547,296 genome-wide single nucleotide polymorphisms (SNPs) between 49 severe and 107 mild confirmed influenza A cases, as well as against a general population sample of 549 individuals. When comparing severe vs. mild influenza A cases, only one SNP was close to the conventional p = 5×10−8. This SNP, rs28454025, sits in an intron of the GSK233 gene, which is involved in a neural development, but seems not to have any connections with immunological or inflammatory functions. Indirectly, a previous association reported with CD55 was replicated. Although sample sizes are low, we show that the statistical power in our design was sufficient to detect highly-penetrant, quasi-Mendelian genetic factors. Hence, and assuming that rs28454025 is likely to be a false positive, no major genetic factor was detected that could explain poor influenza A course.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号